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Abstract— Cooking robots have long been desired by the
commercial market, while the technical challenge is significant.
A major difficulty comes from the demand of perceiving and
handling liquid with different properties. This paper presents
a robot system that mixes batter and makes pancakes out
of it, where understanding and handling the viscous liquid
is an essential component. The system integrates advanced
sensory and control algorithms to autonomously stir flour and
water to achieve the desired batter uniformity, estimate the
batter’s properties such as the water-flour ratio and liquid
level, as well as perform precise manipulations to pour the
batter into any specified shape. Experimental results show
the system’s capability to always produce batter of desired
uniformity, estimate water-flour ratio and liquid level precisely
and accurately pour it into complex shapes. This research
marks a significant stride towards automating culinary pro-
cesses, showcasing the potential for robots to assist in domestic
kitchens and revolutionize the process of food preparation.

I. INTRODUCTION

The intersection of robotics and culinary arts has opened
new avenues for automation in the kitchen, aiming to en-
hance precision, creativity, and efficiency in food preparation
[1] [2]. However, cooking is still challenging for robots
due to the need to manipulate a wide variety of items.
Specifically, cooking often involves the use of liquids, which
are difficult for robots to handle and perceive because of their
changing shapes and complex dynamics. Previous works
have explored ways to estimate liquid property inside an
enclosed container [3] [4], but liquid property estimation
in open-lid containers poses more challenges. Additionally,
although many works aimed at pouring tasks [5] [6], culinary
applications require additional skills such as controlling
the liquid’s flow rate and the final shape. These advanced
capabilities are crucial for successfully executing tasks in
the kitchen.

In this work, our goal is to build an intelligent robotic
system that can automate the pancake-making process and
make the pancake of any desired shape. Naturally, the
process of making pancakes can be divided into two parts:
prepare a uniform batter from stirring, and pour it onto a
griddle. However, pancake batter presents unique challenges
as a liquid due to its variable viscosity — affected by
the water-flour ratio—and its non-Newtonian and highly
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Fig. 1: We developed an intelligent pancake-making system
to perform batter stirring and pouring. Our system can
perceive batter and adjust the pouring policy accordingly.

viscous nature. Also, to successfully pour pancakes of ar-
bitrary shapes and ensure a uniform distribution of batter,
the pouring mechanism must consider the batter’s physical
properties. This is because batter with varying water-flour
ratios exhibits different behaviors, affecting how it should
be handled during pouring. To address these challenges, we
incorporate a perception phase into our methodology, aimed
at assessing the properties of the batter to inform and guide
the pouring strategy effectively.

We propose a pancake-making system to prepare pancake
batter, perceive its properties, and execute precise pouring
actions to form pancakes of any desired shape (Fig. 1). Our
perceiving stage utilizes a push motion to obtain information
on batter uniformity, liquid level, and water-flour ratio. With
liquid level and water-flour ratio, we can determine a suitable
pouring policy specific to this batter, solving the problems
of different batter behaviors. We then implement an MLP
model to estimate the robot arm movement speed to achieve
consistent line strokes of the desired width. With a trajectory
decomposition algorithm, we can turn a binary figure input
into a usable trajectory for the robot to pour the batter input
into the input shape. This integrated approach ensures that
our system can manipulate different batters with consistency,
paving the way for automated pancake creation with high
precision and adaptability.

Our system’s key contribution is its ability to evaluate the
liquid level, and water-flour ratios of pancake batter after



Fig. 2: Pipeline for our pancake-making system. In the preparation phase, the robot grabs the whisk and then measures the
precise position and size of the mixing bowl. Then follows the preliminary stir phase and perceptive stirring until the batter
is uniform. Then the robot measures batter’s liquid level and water-flour ratio. For pouring, we first plan the trajectory of
the robot, then use a stroke control model with liquid level and water-flour ratio as input to regulate the robot’s moving
speed to maintain the desired stroke width.

making sure the batter is uniformly mixed, coupled with
an adaptive strategy for precisely pouring various batters.
Experimental results show that our method can achieve uni-
form batter for all 15 trials with different bowls. Our method
can also estimate the water-flour ratio within 9.6% error and
liquid level within 3.88% relative error. Our resulting line
stroke width has only a relative error of 9.5% and a variance
of 9.6% across several different water-flour ratios. Finally,
we demonstrate that we can make pancakes of any desired
shape. Our proposed system enhances both the functional
and creative aspects of cooking robotics.

II. RELATED WORKS

A. Cooking Robots
The potential of robots in culinary tasks has been explored

in some works. Kumagai et al [7] developed a system that can
search online for receipts and suggest the next move using
voice and gesture in a kitchen setting. However, building
a robotics system that can be generalized for all cooking
tasks is challenging. The above work does not use robots to
perform actual cooking. Many works targeted only specific
tasks in culinary scenarios. Liu et al. [8] developed a bi-
manual robot system to perform the Chinese cooking style
of stir-fry. Shi et al. [2] taught robots to use tools to perform
long-horizon tasks such as dumpling making. None of those
systems possessed the ability to make pancakes. In this
work, we specifically explore pancake-making robots. A
more relevant work by Beetz et al. [9] directly addressed the
pancake-making potential of humanoid robotics without any
help from humans around. Their work focused on flipping
the pancake and robot cooperation with passing batter from
a fridge. Our work presents an entire pipeline that includes
stirring the batter and pouring it to make various desired
shapes.

B. Liquid Property Estimation
Understanding the physical properties of liquids is es-

sential for manipulating them in an accurate way. The

composition and formula of pancake batter not only affect
the taste and texture of the pancakes [10] but also play
a significant role in determining the pouring policy. Many
works have studied liquid properties estimation in both
simulated environments [11] [12] and real-world [13]. Matl
et al. [14] used haptic signals during bottle rotation and a
physics-based approach to predict the liquid viscosity. Huang
et al. [4] studied the tactile data with an impulse action
on an enclosed bottle and showed how that could be used
to estimate liquid properties. In Kitchen Artists [1], Huang
et al. showed how the perception of liquid properties can
guide the squeezing policy of different sauces, focusing on
more viscous liquids. Our research shares similarities with
Kitchen Artists [1] in measuring and manipulating viscous
liquids; however, our focus extends to liquids with non-
Newtonian properties. Additionally, unlike most studies that
involve enclosed containers, our work requires interacting
with an open mixing bowl, where the interaction space
for perception is more limited. A more related study, the
Stir-to-Pour project [15] explored liquid dynamics modeling
through stirring and visual feedback to fit a simulated liquid
model. Our approach also involves an interactive motion for
perceiving liquid properties but relies on force torque sensors
without simulation to inform our pouring policy.

C. Liquid Pouring
Robot pouring is the most common task involving the

manipulation of liquids, and in most cases, researchers focus
on controlling the amount of low-viscosity liquid that is
dispensed into a container [5] [6] [16]. Schenck and Fox
[17] utilized RGB images to estimate liquid volume in
containers for feedback control in pouring. Liang et al.
[18] used audio and haptic feedback to control the precise
amount of liquid poured into a container. Babaians et al. [19]
introduced an RL-based method to obtain a more precise
result for the desired amount in a certain container. Matl
et al. [14] explored precise pouring in an open-loop manner
with information obtained by perceiving the properties of the



liquid. Compared to those works, our approach focuses on
dispensing high-viscosity liquid with controllable flow rates.
Huang et al.’s Kitchen Artist [1] has a similar goal to ours
to control the flow rate of viscous liquid but with a squeeze
bottle instead of pouring. Our setup poses a more challenging
setting for liquid manipulation.

III. PERCEIVING LIQUID BATTER
AND PRECISE POURING

In this section, we discuss the methodologies for assessing
liquid properties and establishing a precise pouring strategy,
with the ultimate goal of crafting pancakes in any shape the
user desires, as shown in Fig. 2. The inherent high-viscosity
and non-Newtonian properties of pancake batter introduce
complexities in both its measurement and manipulation.
To address this, we employ a push motion that exerts a
constant force on the batter to gather data on its uniformity,
liquid level, and water-flour ratio. This approach effectively
neutralizes the impact of the batter’s non-Newtonian char-
acteristics with constant force, ensuring the measurements
are comparable. Our approach incorporates the estimation of
these vital properties to devise a pouring policy that controls
the stroke width with high precision.

A. Liquid Property Estimation

We aim to estimate the mixture’s uniformity, liquid level,
and water-flour ratio of batter. Uniformity assessment ensures
the batter’s quality, confirming its readiness for pouring.
The measurement of the batter liquid level is utilized for
determining the water-flour ratio and also the initial an-
gle when pouring. The water-flour ratio would be used to
determine our pouring policy. In our approach, the robot
horizontally pushes the whisk in the batter, measures the
resistance torque of the y-axis using a wrist-mounted Force-
Torque (F/T) sensor, and uses it to infer the liquid properties.
Our insight is that the varying viscosities and depths of
the batter result in distinct resistance torques during the
horizontal pushing process. We set the pushing speed to 2.5
cm/s and the pushing distance to 5 cm.

1) Uniformity: The uniformity of liquid batter refers to
the evenness of its composition throughout, with respect
to ingredients being thoroughly mixed and resolved. The
goal of the uniformity check is to control the robot to stop
stirring once the batter achieves uniformity. To achieve this,
we measure the average torque of a push motion after 50
rounds of quick stirring in the perceptive stiring stage, which
is defined as a trial.

Fig. 3(a) shows the changes of torque throughout the
stirring process when stirring five batches of batter with a
water-flour ratio ranging from 1.1 to 1.5. The resistance
torque continues to decrease over the 30 minute stirring
period, indicating that the batter viscosity keeps decreasing
and never converges. This phenomenon could be attributed
to the batter becoming finer as a result of constant stirring.
However, humans typically assess batter uniformity after
only 4 to 5 trials of quick stirring (approximately 160 to 200
seconds) as shown in Fig. 3(c). To keep our system efficient,

we want to prevent stirring to the over-uniform state as shown
in Fig. 3(c).

To control the robot to stop stirring at the appropriate time,
we set a threshold for the changing rate of the measured
torque based on human labeling. This label is obtained by the
human observer’s rating on each trial’s resulting batter, with
the scale shown in Fig. 3. We define the point where human
observers’ rating average is 0 to be our uniformity threshold,
represented by the black crosses in Fig 3(a). We aim for
the robot to stop stirring at a point that aligns closely with
these identified moments. This is achieved by comparing the
difference in torque between consecutive trials against this
threshold, thereby determining the uniformity of the batter.

Fig. 3: Batter uniformity analysis. (a) Reduction in resistance
torque due to increasing uniformity during the stirring of five
batches of batter, with water-flour ratios ranging from 1.1 to
1.5. Black crosses mark the points of uniformity as assessed
by human observers, who use a scale ranging from −3 to 3:
(b) non-uniform example(−3), (c) uniform example(0), and
(d) over-uniform example(3).

2) Liquid Level: The liquid level is defined as the dis-
tance from the bottom of the bowl to the surface of the
batter. We employ multiple push motions in an increasing
height sequence. Fig. 4(a) illustrates the trajectory of this
motion. After each pushing motion, we obtain an average
torque reading. We show the relation between torque and
the distance from the tip of the whisk to the bottom of the
bowl, illustrated in Fig. 4(b). The slope portion corresponds
to pushing in the batter while the flat portion corresponds to
pushing in the air where the torque is around 0 N.

To differentiate between a push occurring in the batter
versus in the air, we set a threshold for the variation in
torque measurements between successive pushes. By fitting
the torque data for both batter and air pushes to linear
functions, we then identify the intersection of these fitted
lines as the precise point where air transitions to batter. This



Fig. 4: This figure shows the pipeline of liquid level and
water-flour ratio estimation. (a) The trajectory of the pushing
motion of each trial is represented by blue lines. Torque mea-
surements are acquired from each pushing motion, resulting
in a Torque-Distance to bottom curve (b). This curve is used
to estimate liquid level. Following this, a Torque-Immersion
curve (c) is derived from the estimated liquid level. Finally,
the water-flour ratio is estimated using this data through our
data-driven model (d).

intersection point shows the liquid level of the batter.
3) Water-flour Ratio: Under the assumption of a uni-

formly mixed batter, a relationship exists between the water-
flour ratio and the viscosity of the mixture. Liquids with
higher viscosities offer more resistance during stirring, al-
lowing us to develop a data-driven model to estimate the
water-flour ratio based on the observed resistance torque.
We collect torque data by pushing into various batches of
liquid batter with different water-flour ratios and immersive
depths to measure the water-flour ratio. We found that greater
immersive depths and smaller water-flour ratios yield larger
torques, which is consistent with expectations.

To estimate the water-flour ratio of an unknown batter,
our model takes the “Torque vs. Immersion depth” curve
obtained in section III-A.2 as input. Then it finds the closest
two fitted curves that minimize mean square error (MSE) and
estimates the water-flour ratio by calculating the weighted
average value as rE = (M1r1 +M2r2)/(M1 +M2). Where
rE is the estimated water-flour ratio, ri is the water-flour
ratio label. Mi denotes the MSE between predicted and
measured torque, computed as Mi = 1

n

∑
j(T̂j − Tj)

2,
with n representing the total pushing trials count, j indexes
each data point in the “Torque-Immersion depth” curve and
T̂j denoting predicted torque in the dataset with Tj being
measured torque.

B. Precise Controlling of Stroke Width

We want to control the width of the lines which is
influenced by two key factors: the batter flow rate and

the robot arm moving speed. While using visual feedback
for intuitive control seems logical, real-time control based
on visual feedback is challenging. We, therefore, propose
an open-loop control using the properties obtained from
perception to predict batter flow rate. We develop a model to
incorporate estimations from the perception stage to refine
our pouring policy. Overall, our approach is divided into two
main stages: controlling the batter flow rate and establishing
a model to predict the robot’s movement speed from a desired
batter stroke width.

1) Precise Control of Flow Rate : To achieve a precisely
controlled batter-pouring process, we aim to control the
robot’s pouring speed with consistency and accuracy. In our
method, the robot first grabs the bowl handle, and we control
the rotation of the wrist joint to pour out the batter. Through
experimentation, we discover that maintaining an angular
speed of 0.007 radian per second enables us to achieve
a uniform flow rate across various water-flour ratios. By
sticking to this speed, we can control the flow rate in a quasi-
static manner.

2) Movement Speed Control: With a constant flow rate of
the batter poured out, we then control the motion speed of
the robot to form an even batter stroke with well-controlled
widths, which is the basic requirement to form an arbitrarily
shaped pancake. We train an MLP model to predict the
robot’s moving speed from the water-flour ratio of the batter
and the desired stroke width. Another more traditional case
is we aim for the robot to create a round pancake by pouring
the batter from a stationary position. Here, we manage the
pouring duration to determine the pancake’s size. We train
another MLP model to predict this pouring time.

IV. PANCAKE ROBOT PIPELINE

The overall pipeline of pancake making is divided into four
sub-tasks: preprocessing, stirring, perception, and pouring.
We have discussed our approaches to perception and con-
trolling poured line widths in Section III, and in this section,
we will introduce other technical components of our pancake
making system.
A. Preparation Process

This process includes taking the whisk and measuring
the precise location and the size of the mixing bowl. The
whisk is initially located on a fixed whisk shelf (Fig 6).
The robot automatically picks up the whisk, making sure
to grasp it at the same spot each time. This consistency
ensures that the force and torque readings we gather are
comparable and reliable. The robot first holds the whisk to go
forward, backward, left, and right to explore the bowl edge.
The force/torque (F/T) sensor detects a force exceeding 5
N on the x-y plane during these exploratory movements, the
robot halts and logs the displacement. With those results, the
center and radius of the circle can be inferred and will be
used as the precise location and size of the bowl.

B. Stirring

We developed four motions to mix water and flour: quick
stirring, fine stirring, edge scraping, and whisk shaking.



Table I shows parameters in detail.

Speed Depth Radius Rotation

Quick stirring 15.7 rad/s h− 2 mm r − 2 mm No
Fine stirring 6.28 rad/s h− 5 mm r mm Yes
Edge scraping 3.14 rad/s h− 15 mm r + 2 mm Yes
Shaking 8 Hz h− 5 mm N/A No

TABLE I: Parameters of the four motions, where h denotes
the liquid level and r denotes the measured radius of the
bowl. Rotation is a supplementary movement enabling the
whisk to spin back and forth along its axis, akin to the motion
of an egg beater.

1) Quick Stirring: This motion is designed for mixing
water and flour at high speed to achieve uniformity. The
motion trajectory’s radius is smaller than the bowl, thus it
doesn’t make contact with it.

2) Fine Stirring: This motion is designed to handle the
area that quick stirring motion is unable to reach. At the
initial stage of stirring, flour easily accumulates in those
areas. If not dispersed early in the accumulation, it will form
hard-to-dissolve flour clumps.

3) Edge Scraping: This motion is designed to scratch
the batter stick to the border of the bowl, which typically
happens at the initial stage of stirring. The whisk will contact
with the bowl’s edge and have small deformations. The
trajectory’s height is 15 mm above the bottom of the bowl
to scrape the flour above the liquid surface.

4) Whisk Shaking: This motion is designed to get rid of
unresolved batter stuck in the space within the whisk. We
command the whisk to translate back and forth within the
batter at a frequency of 8 Hz and at the distance of 5 cm.

Our stirring process includes a preliminary stirring phase
to mix the raw material into a batter mixture and a perceptive
stirring phase to achieve higher batter uniformity. In the
preliminary stirring phase, we execute the following series
of actions over a 90-second period: quick stirring, edge
scraping, fine stirring, and whisk shaking. In the perceptive
stirring phase, we execute 50 rounds of quick stirring and
assess the mixture’s uniformity by conducting the push
test repeatedly until the batter reaches uniform. Following
this, we proceed to the liquid property estimation sub-task
(Section III-A).
C. Pouring Control and Planning

This section outlines our approach for precisely controlling
the pouring of batter and planning varied trajectories for
different input shapes, aiming to create pancakes of arbitrary
shapes. Our method includes an initial angle control module
to find an optimal initial angle and a trajectory planning
module that shapes the poured batter into the desired forms.

1) Control of Initial Angle: Another source that influences
the flow rate of the batter is the initial angle. In Section III-
B, we discussed how to maintain a flow rate, but the initial
flow rate can vary if we change the initial angle. The goal of
this module is to find an optimal initial angle so that batter
with the same water-flour ratio and different liquid levels

can have a constant initial flow rate. We design the spout in
Fig. 6 to help regulate batter flow. We first use the liquid
level to estimate a starting angle smaller than what it should
be. Our system utilizes visual input to monitor the flow of
the batter, with a KMeans segmentation to isolate the batter.
When the batter is detected to drip from the spout, we initiate
the pouring movement, as shown in Fig. 5.

Fig. 5: Viusal Feedback Control Pipeline. When the vertical
distance between the top and bottom pixels of the batter
segment starts to increase, it means the batter begins to flow
onto the spout. When the distance stops to increase, it signals
the batter has flowed to the end of the spout.

2) Trajectory Planning: To form an arbitrarily shaped
pancake, we create an algorithm that can decompose a shape
from a binary image into a batter-pouring trajectory for the
robot. Fig. 2 shows an example of the trajectory we generate.
Our algorithm contains two modes for generating trajectories
of different shapes:

• For an enclosed shape, our algorithm uses the shape’s
edge as the initial loop and erodes the shape to generate
trajectories for inner loops.

• For non-enclosed lines, our algorithm skeletonizes the
image to form the trajectory and then refine the shape
using the Minimum Spanning Tree algorithm.

V. EXPERIMENTS AND RESULTS

In this section, we test the perception and pouring com-
ponent of our pancake making system. For our perception
system, we evaluate the precision in estimating uniformity,
water-flour ratio, and liquid level of the pancake batter
in circular containers with various sizes. For our pouring
system, we test our method on the task of controlling the
diameter of the round pancake and the width of drawn line
strokes.

A. Experiment Setup

Fig. 6 shows our experimental setup. Our system uses a
6-DoF UR5e Robot arm by Universal Robotics. This arm
is equipped with a WSG-50 2-fingered gripper from Weiss
Robotics with aluminum fingers. Attached to the robot’s
wrist is a 6-axis NRS-6050-D80 F/T sensor from Nordbo
Robotics with a sampling rate of 1000 Hz. To ensure stability
during mixing, we mount the mixing bowl on a holder and
place a shelf equipped with a 1920x1080 resolution RGB
camera above it. For the stirring experiments, we utilized
a default small bowl with an 8.3 cm radius and 1100 ml



Fig. 6: (a) System setup overview of our pancake-making
robot. (b) Specialized pouring spout. (c) Mixing bowl
equipped with the specialized pouring spout. (d) Specialized
whisk gripping holder.

volume, as well as a large bowl with a 10.5 cm radius and
2200 ml volume.

B. Liquid Property Estimation

In this section, we assess our liquid property estimation
approach, which includes uniformity verification, liquid level
estimation, and water-flour ratio estimation.

1) Data Collection: We collect training data for building
the water-flour ratio estimation model and collect test data
for uniformity check, liquid level, and water-flour ratio
estimation. In both sets, stirring is performed by the robot.
For the training set, we only collect data in the small bowl.
The test set employs both the small bowl and the large bowl,
demonstrating our method’s generalizability.

For the training set, we collect data from batters with
a water-flour ratio varying from 1.0 to 1.5 in increments
of 0.05. The water quantity used for each bowl of batter
is controlled around 300 ml, along with the corresponding
amount of flour by weight. The robot is programmed to
execute 5 cm push motions from a height of 3 mm to 63
mm above the bottom in 3 mm increments, following the
trajectory depicted in Fig 4(a), while torque data is recorded.
In total, 11 trials of batter are made and 660 data points are
collected to build our model.

For the test set, 10 and 5 trials of batter are prepared in
small and large bowls, respectively, with water-flour ratios
randomly selected between 1.0 and 1.5 and total weights
varying from 450 to 700 g. For each batter trial, uniformity

is assessed by human observers, followed by evaluation of
the accuracy of liquid level and water-flour ratio estimations.

Fig. 7: Water-flour ratio estimation result of 15 batches of
batter (10 in small bowl, 5 in large bowl).

2) Uniformity Analysis: Since uniformity has no official
definition, we rely on assessments from humans with pan-
cake cooking experiences to evaluate uniformity. We invited
5 individuals to evaluate the final stirring outcomes of the 15
batter batches of the test set. They can either observe it by
eyes or utilize the whisk to feel the texture of the batter and
assess its consistency. After observation, they were first asked
to give a rating according to a scale ranging from −3 to 3,
where −3 indicates non-uniform batter and 3 indicates over-
uniform batter. The mean uniformity score of 0.625 with a
variance of 1.1 indicates that the stirring outcomes fall within
the desired uniformity range. Results show that our stirring
strategy and uniformity check also work well with a large
bowl.

Liquid level Water-flour ratio

Bowl size Small Large Small Large
Average error 1.37 mm 2.33 mm 0.033 0.048

Percentage error 3.04% 3.88% 6.6% 9.6%

TABLE II: Average and percentage errors in liquid level and
water-flour ratio estimations for small and large bowls.

3) Liquid level Estimation: Table II shows the error and
percentage error of liquid level estimation on our test set.
We have a total of 20 test trials whose liquid levels range
from 5 to 55 mm. Liquid level error is as low as 3.04%.

4) Water-flour Ratio Estimation: Table II and Fig. 7 show
the error and percentage error of water-flour ratio estimation
on our test set. Although our testing error in the large
bowl is slightly higher, it remains in an acceptable range,
demonstrating the generalization potential of our method.

C. Precise Pouring Control

To make a pancake of the desired shape, we want to
control the batter line strokes consistently and accurately



Fig. 8: A sample result of lines drawn using various control
methods. The water-flour ratio for this result is 1.4

when pouring. In this section, we designed two tasks, Line
Stroke and Round Shapes, to show that our method for line
stroke drawing and round-shaped pancake control is precise.

1) Data Collection: To form a shape, the robot pours the
batter onto a 12-inch metal pizza plate, which we believe
is the best available alternative to a traditional griddle. We
use the RGB camera to capture and measure the results. We
collected training and testing data of the two experiments
and the test data did not replicate any scenarios from the
training data, but the water-flour ratios were within the same
range. The liquid level also varys for every trial of data we
collected.

Line Strokes Task: We collect training data by controlling
the robot arm moving speed and documenting the resulting
line width. Our training dataset includes trials across five
distinct water-flour ratios, ranging from 1.25 to 1.45. The
resulting line widths of all experiments ranging from 0.8 cm
to 5.9 cm. For the test data, we use five different batters,
aiming to draw lines in four widths from 1 cm to 4 cm,
which do not exist in training data.

Round Shapes Task: We collect training data by con-
trolling the pouring time and documenting the resulting
diameters. Our training dataset includes trials with the same
range of water-flour ratios. The resulting pancake diameters
ranging from 2 cm to 22.5 cm. For the test dataset, we use
five different batters to pour four varying diameters ranging
from 5 cm to 20 cm.

2) Model Implmentation: We implement a Multi-Layer
Perceptron with 1 hidden layer with 32 inputs and 64 outputs
in PyTorch and train it using Adam optimizer for 1000
epochs and a learning rate of 0.06. The same network
structure and setup are used for both experiments. Both MLP
models are trained with MSE loss in a supervised manner.

3) Baseline:
Line Strokes Task: The Simple method draws the line

Fig. 9: Our round shape pancake pouring result using batter
with different water-flour ratio. Our method pours pancakes
with more accurate sizes than the baseline method.

with the same arm moving speed regardless of the water-
flour ratio of the batter. It assumes all batters have the
same behavior. We also do not control the flow rate and
assume the speed that is needed to draw a line for all water-
flour ratios is the same. Moreover, we assume the speed of
different widths is proportionally increasing. We found that
the average speed needed to draw a line of 1 cm wide is 0.2
cm/s, then we increase this speed linearly for different line
widths respectively.

The Manual method draws the line by a human expert
holding the bowl. We asked the human expert to try to pour
different water-flour ratio batter to draw the same width as
our test set. We also give the human expert a reference width
in the form of a piece of paper of the desired width.

Round Shapes Task: The baseline method ignores the
dynamic of the batter and only considers the target volume
of pouring. So we make the robot quickly reach the final
angular position, which is determined by the volume we want
to pour, and hold for 30 seconds, where the vast majority of
the batter is poured and only a few drops are left in some

Ours Simple Manual

Error (mm) 1.95 2.91 2.95
Percentage Error 9.5% 12.7% 15.6%
Variance (mm) 1.93 2.03 4.71
Percentage Variance 9.6% 9.9% 23.8%

TABLE III: The table shows the results of the Line Strokes
drawing task. Our method achieves both accuracy and con-
sistency.

Ours Baseline

Error (cm2) 5.25 22.4
Percentage Error 3.88% 32.2%

TABLE IV: Comparison of round-shaped pancake area error
and percentage error between Baseline and Our method. Ours
performs much better than our baseline.



Fig. 10: We demonstrated our system can produce pancakes
with arbitrary shapes. (a) shows the desired input images,
and (b) shows the results achieved.

cases.
4) Result: We measured the width and the area difference

of the poured batter from the desired shape. The result is
shown in Fig. 8, 9 and Table III, IV. In summary, our method
shows a significant improvement compared to the baseline
where the batter properties are not considered.

D. Pancake Results of Various Shapes

Finally, we tested the robot by creating different shapes of
pancakes. We used our algorithm to decompose the image,
stir the batter, and make the robot proceed pouring with the
speed based on our model to maintain the desired width of
the drawing stroke. Fig. 10 shows the results.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents a robotic system to perform effective
pancake batter stirring and pouring of any arbitrary shape
with force-torque and visual feedback. Our approach is
composed of four stages, each dedicated to a specific aspect
of pancake preparation or to gain more understanding of
batter properties. The main goals of our systems include
mixing the batter well, estimating properties such as water-
flour ratio and liquid level accurately, and pouring the batter
into the targeted shape precisely. Our experiments and results
show that our method can create a uniformly mixed batter,
can control the poured line strokes with accuracy and con-
sistency, and can poured into the desired shapes. However,
our current system does not handle sharp turns in the image
quite well, as shown in Fig. 10. In the future, the work can
be further improved if we can solve the problem with sharp
edges in the desired images. One potential solution is with
another method to form the shapes instead of pouring, to
allow for more clear sharp turns and enhance the aesthetic
appeal of the final pancakes.
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